STATISTICAL TREATMENT OF GRAVITATIONAL CLUSTERING ALGORITHM by

نویسندگان

  • Yao Zhang
  • Satish Iyengar
  • Marek Druzdzel
چکیده

STATISTICAL TREATMENT OF GRAVITATIONAL CLUSTERING ALGORITHM Yao Zhang, PhD University of Pittsburgh, 2010 In neuroscience, simultaneously recorded spike trains from multiple neurons are increasingly common; however, the computational neuroscience problem of how to quantitatively analyze such data remains a challenge. Gerstein, et al. [5] proposed a gravitational clustering algorithm (GCA) for multiple spike trains to qualitatively study interactions, in particular excitation, among multiple neurons. This thesis is mainly focused on a probabilistic treatment of GCA and a statistical treatment of Gerstein’s interaction mode. For a formal probabilistic treatment, we adopt homogeneous Poisson processes to generate the spike trains; define an interaction mode based on Gerstein’s formulation; analyze the asymptotic properties of its cluster index – GCA distances (GCAD). Under this framework, we show how the expectation of GCAD is related to a particular interaction mode, i.e., we prove that a time-adjusted-GCAD is a reasonable cluster index for large samples. We also indicate possible stronger results, such as central limit theorems and convergence to a Gaussian process. In our statistical work, we construct a generalized mixture model to estimate Gerstein’s interaction mode. We notice two key features of Gerstein’s proposal: (1) each spike from each spike train was assumed to be triggered by either one previous spike from one other spike train or environment; (2) each spike train was transformed into a continuous longitudinal curve. Inspired by their work, we develop a Bayesian model to quantitatively estimate excitation effects in the network structure. Our approach generalizes the mixture model to

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption

Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...

متن کامل

Gravitational Based Hierarchical Clustering Algorithm

We propose a new gravitational based hierarchical clustering algorithm using kdtree. kdtree generates densely populated packets and finds the clusters using gravitational force between the packets. Gravitational based hierarchical clustering results are of high quality and robustness. Our method is effective as well as robust. Our proposed algorithm is tested on synthetic dataset and results ar...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

Optimality of the flexible job shop scheduling system based on Gravitational Search Algorithm

The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...

متن کامل

Parameters Assignment of Electric Train Controller by Using Gravitational Search Optimization Algorithm

The speed profile of the train will be determined according to criteria such as safety, travel convenience, and the type of electric motor used for traction. Due to the passengers and cargo on the train, the electric train load is constantly changing. This will require reassigning the speed controller’s parameters of the electric train. For this purpose, the Gravitational Search optimization Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010